skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hale, Kyle C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many distributed applications rely on the strong guarantees of sequential consistency to ensure program correctness. Replication systems or frameworks that support such applications typically implement sequential consistency by em- ploying voting schemes among replicas. However, such schemes suffer dramatic performance loss when deployed globally due to increased long-haul message latency between replicas in separate data centers. One approach to overcome this challenge involves deploying distinct instances of a service in each geographic cluster, then loosely coupling those services. Unfortunately, the consistency guarantees of the individual replication system in- stances do not compose when coupled this way, sacrificing overall sequential consistency. We propose an alternative approach, the consistent, propagatable partition tree (CoPPar Tree), a data structure that spans multiple data centers and data partitions, and that realizes sequential consistency using divide-and-conquer. By leveraging the geospatial affinity of data used in global services, CoPPar Tree can localize reads and writes in a sequentially consistent manner, improving the overall performance of a sequentially consistent service deployed at global scale. Our work allows clients to access local data and fully run SMR protocols locally without additional overhead. We implemented CoPPar Tree by enhancing ZooKeeper with an extension called ZooTree, which can be deployed without changing existing ZooKeeper clusters, and which achieves a speedup of 100×for reads and up to 10× for writes over prior work. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Enabling efficient fine-grained task parallelism is a significant challenge for hardware platforms with increasingly many cores. Existing techniques do not scale to hundreds of threads due to the high cost of synchronization in concurrent data structures. To overcome these limitations we present XQueue, a novel lock-less concurrent queuing system with relaxed ordering semantics that is geared towards realizing scalability up to hundreds of concurrent threads. We demonstrate the scalability of XQueue using microbenchmarks and show that XQueue can deliver concurrent operations with latencies as low as 110 cycles at scales of up to 192 cores (up to 6900× improvement compared to traditional synchronization mechanisms) across our diverse hardware, including x86, ARM, and Power9. The reduced latency allows XQueue to provide orders of magnitude (3300×) better throughput that existing techniques. To evaluate the real-world benefits of XQueue, we integrated XQueue with LLVM OpenMP and evaluated five unmodified benchmarks from the Barcelona OpenMP Task Suite (BOTS) as well as a graph traversal benchmark from the GAP benchmark suite. We compared the XQueue-enabled LLVM OpenMP implementation with the native LLVM and GNU OpenMP versions. Using fine-grained task workloads, XQueue can deliver 4× to 6× speedup compared to native GNU OpenMP and LLVM OpenMP in many cases, with speedups as high as 116× in some cases. 
    more » « less
  3. null (Ed.)
    Software prefetching and hardware-based cache allocation techniques (CAT) have been successfully applied in main-memory database engines to fetch data into cache before it is needed and to partition a shared last-level cache (LLC) to prevent concurrent tasks from evicting each others' data. We investigate the interaction of these techniques and demonstrate that while a single prefetching strategy is sufficient, the combination of both techniques is only effective if the cache partitioning strategy adapts the partitioning based on the types of tasks currently sharing an LLC. We present a simple, yet effective, scheme that uses prefetching and adapts cache partition allocations dynamically. 
    more » « less
  4. Specialized operating systems have enjoyed a recent revival driven both by a pressing need to rethink the system software stack in several domains and by the convenience and flexibility that on-demand infrastructure and virtual execution environments offer. Several barriers exist which curtail the widespread adoption of such highly specialized systems, but perhaps the most consequential of them is that these systems are simply difficult to use. In this paper we discuss the challenges faced by specialized OSes, both for HPC and more broadly, and argue that what is needed to make them practically useful is a reasonable development and deployment model that will form the foundation for a kernel ecosystem that allows intrepid developers to discover, experiment with, contribute to, and write programs for available kernel frameworks while safely ignoring complexities such as provisioning, deployment, cross-compilation, and interface compatibility. We argue that such an ecosystem would allow more developers of highly tuned applications to reap the performance benefits of specialized kernels. 
    more » « less